29 research outputs found

    Strukturelle und funktionelle Charakterisierung der Proteintranslokasen der mitochondrialen Innenmembran von Neurospora crassa und Saccharomyces cerevisiae

    Get PDF
    Die Innenmembran von Mitochondrien besitzt zwei Translokasen für den Import von Proteinen. Der TIM23-Komplex vermittelt die Translokation über und in die Innenmembran, der TIM22-Komplex inseriert Proteine mit mehreren hydrophoben Segmenten in die Innenmembran. Im Rahmen dieser Arbeit sollten Komponenten dieser Translokationsmaschinerien in N. crassa und S. cerevisiae identifiziert und charakterisiert werden. In N. crassa waren zu Beginn der Arbeit im Vergleich zu S. cerevisiae nur wenige Komponenten der TIM-Translokasen bekannt. In der vorliegenden Arbeit wurden die Proteine Tim22, Tim54 und Tim44 in N. crassa identifiziert. Dies wurde entweder durch die Verwendung degenerierter Primer in PCR-Reaktionen mit cDNA aus N. crassa oder durch Durchmustern von Datenbanken erreicht. Die identifizierten Proteine des TIM22-Komplexes wurden bezüglich ihrer Lokalisation und Topologie untersucht. Es handelt sich bei Tim22 um ein Membranprotein der inneren mitochondrialen Membran mit vier Transmembranhelices, das sowohl den N- als auch den C-Terminus in den Intermembranraum exponiert. Tim54 ist ebenso in der inneren mitochondrialen Membran lokalisiert und besitzt nur eine Transmembranhelix. Der größte Teil des Proteins liegt im Intermembranraum, nur wenige Aminosäurereste befinden sich in der mitochondrialen Matrix. Ferner wurde der TIM22-Komplex von N. crassa charakterisiert. Dazu zählten die Untersuchungen der beteiligten Komponenten, der Komplexgröße und der Stabilität des Komplexes. In N. crassa besteht der TIM22-Komplex aus den Komponenten Tim22, Tim54, Tim9 und Tim10, die einen etwa 350 kDa großen Komplex bilden. Für spätere funktionelle Untersuchungen wurde der TIM22-Komplex bzw. Tim22 alleine gereinigt. Beides wurde in Lipidvesikel rekonstituiert. Dieses Verfahren bietet die Grundlage für Untersuchungen in einem definierten experimentellen System, wie Proteine der Carrier-Familie in Lipidmembranen inseriert werden. In S. cerevisiae wurde mit Tim16 eine neue Komponente des mitochondrialen Importmotors des TIM23-Komplexes identifiziert. Dies konnte durch Koreinigung mit einer weiteren Komponente des Importmotors, Tim14, erreicht werden. Die strukturelle Vorhersage für Tim16 ähnelt stark der des J-Proteins Tim14. Tim16 fehlt allerdings das für die Funktion von J-Proteinen essentielle HPD-Motiv. Tim16 ist in der mitochondrialen Matrix lokalisiert und peripher mit der inneren mitochondrialen Membran assoziiert. Durch Depletion von Tim16 wird der Import von Substraten in Mitochondrien beeinträchtigt, die vom mitochondrialen Importmotor abhängig sind. Durch Koimmunopräzipitationen und Quervernetzungsexperimente wurde Tim16 als neue Komponente des mitochondrialen Importmotors der TIM23-Translokase definiert. Funktionell spielt Tim16 eine große Rolle für die Integrität des Importmotors. Die genaue Struktur des Importmotors, seine Regulation und dessen Dynamik im Zuge der Translokation von Präproteinen muss in zukünftigen Experimenten geklärt werden

    InterAKTions with FKBPs - mutational and pharmacological exploration

    Get PDF
    The FK506-binding protein 51 (FKBP51) is an Hsp90-associated co-chaperone which regulates steroid receptors and kinases. In pancreatic cancer cell lines, FKBP51 was shown to recruit the phosphatase PHLPP to facilitate dephosphorylation of the kinase Akt, which was associated with reduced chemoresistance. Here we show that in addition to FKBP51 several other members of the FKBP family bind directly to Akt. FKBP51 can also form complexes with other AGC kinases and mapping studies revealed that FKBP51 interacts with Akt via multiple domains independent of their activation or phosphorylation status. The FKBP51-Akt1 interaction was not affected by FK506 analogs or Akt active site inhibitors, but was abolished by the allosteric Akt inhibitor VIII. None of the FKBP51 inhibitors affected AktS473 phosphorylation or downstream targets of Akt. In summary, we show that FKBP51 binds to Akt directly as well as via Hsp90. The FKBP51-Akt interaction is sensitive to the conformation of Akt1, but does not depend on the FK506-binding pocket of FKBP51. Therefore, FKBP inhibitors are unlikely to inhibit the Akt-FKBP-PHLPP network

    A Disulfide Relay System in the Intermembrane Space of Mitochondria that Mediates Protein Import

    Get PDF
    SummaryWe describe here a pathway for the import of proteins into the intermembrane space (IMS) of mitochondria. Substrates of this pathway are proteins with conserved cysteine motifs, which are critical for import. After passage through the TOM channel, these proteins are covalently trapped by Mia40 via disulfide bridges. Mia40 contains cysteine residues, which are oxidized by the sulfhydryl oxidase Erv1. Depletion of Erv1 or conditions reducing Mia40 prevent protein import. We propose that Erv1 and Mia40 function as a disulfide relay system that catalyzes the import of proteins into the IMS by an oxidative folding mechanism. The existence of a disulfide exchange system in the IMS is unexpected in view of the free exchange of metabolites between IMS and cytosol via porin channels. We suggest that this process reflects the evolutionary origin of the IMS from the periplasmic space of the prokaryotic ancestors of mitochondria

    Mia40, a novel factor for protein import into the intermembrane space of mitochondria is able to bind metal ions

    Get PDF
    AbstractMany proteins located in the intermembrane space (IMS) of mitochondria are characterized by a low molecular mass, contain highly conserved cysteine residues and coordinate metal ions. Studies on one of these proteins, Tim13, revealed that net translocation across the outer membrane is driven by metal-dependent folding in the IMS [1]. We have identified an essential component, Mia40/Tim40/Ykl195w, with a highly conserved domain in the IMS that is able to bind zinc and copper ions. In cells lacking Mia40, the endogenous levels of Tim13 and other metal-binding IMS proteins are strongly reduced due to the impaired import of these proteins. Furthermore, Mia40 directly interacts with newly imported Tim13 protein. We conclude that Mia40 is the first essential component of a specific translocation pathway of metal-binding IMS proteins

    Integrative Analysis of the Mitochondrial Proteome in Yeast

    Get PDF
    In this study yeast mitochondria were used as a model system to apply, evaluate, and integrate different genomic approaches to define the proteins of an organelle. Liquid chromatography mass spectrometry applied to purified mitochondria identified 546 proteins. By expression analysis and comparison to other proteome studies, we demonstrate that the proteomic approach identifies primarily highly abundant proteins. By expanding our evaluation to other types of genomic approaches, including systematic deletion phenotype screening, expression profiling, subcellular localization studies, protein interaction analyses, and computational predictions, we show that an integration of approaches moves beyond the limitations of any single approach. We report the success of each approach by benchmarking it against a reference set of known mitochondrial proteins, and predict approximately 700 proteins associated with the mitochondrial organelle from the integration of 22 datasets. We show that a combination of complementary approaches like deletion phenotype screening and mass spectrometry can identify over 75% of the known mitochondrial proteome. These findings have implications for choosing optimal genome-wide approaches for the study of other cellular systems, including organelles and pathways in various species. Furthermore, our systematic identification of genes involved in mitochondrial function and biogenesis in yeast expands the candidate genes available for mapping Mendelian and complex mitochondrial disorders in humans

    Selective targeting of disease-relevant protein binding domains by O-phosphorylated natural product derivatives

    No full text
    Phosphorylation-dependent protein binding domains are crucially important for intracellular signaling pathways and thus highly relevant targets in chemical biology. By screening of chemical libraries against 12 structurally diverse phosphorylation-dependent protein binding domains, we have identified fosfosal and dexamethasone-21-phosphate as selective inhibitors of two antitumor targets: the SH2 domain of the transcription factor STAT5b and the substrate-binding domain of the peptidyl-prolyl isomerase Pin1, respectively. Both compounds are phosphate prodrugs with documented clinical use as anti-inflammatory agents in humans and were discovered with a high hit rate from a small subgroup within the screening library. Our study indicates O-phosphorylation of appropriately preselected natural products or natural product derivatives as a generally applicable strategy for the identification of non-reactive and non-peptidic ligands of phosphorylation-dependent protein binding domains. Moreover, our data indicate that it would be advisable to monitor the bioactivities of clinically used prodrugs in their uncleaved state against phosphorylation-dependent protein binding domains

    Tim50, a novel component of the TIM23 preprotein translocase of mitochondria

    No full text
    The preprotein translocase of the inner membrane of mitochondria (TIM23 complex) is the main entry gate for proteins of the matrix and the inner membrane. We isolated the TIM23 complex of Neurospora crassa. Besides Tim23 and Tim17, it contained a novel component, referred to as Tim50. Tim50 spans the inner membrane with a single transmembrane segment and exposes a large hydrophilic domain in the intermembrane space. Tim50 is essential for viability of yeast. Mitochondria from cells depleted of Tim50 displayed strongly reduced import kinetics of preproteins using the TIM23 complex. Tim50 could be cross-linked to preproteins that were halted at the level of the translocase of the outer membrane (TOM complex) or spanning both TOM and TIM23 complexes. We suggest that Tim50 plays a crucial role in the transfer of preproteins from the TOM complex to the TIM23 complex through the intermembrane space

    The FKBP51-Akt interaction depends on the conformation of Akt.

    No full text
    <p><b>A</b> HEK293T cells were transfected with FLAG-tagged FKBP51<sup>K352A/R356A</sup> (TPR_mut) and HA-tagged Akt1. After 2 days cells were treated with 10 µM inhibitor VIII, AT7867 or DMSO for 1 h. Cell lysates and immunoprecipitates were analyzed in duplicates by Western blotting. <b>B</b> GSH beads loaded with purified activated GST_Akt1ΔPH were incubated with FKBP51 with or without AMP-PNP. Eluates were analyzed by Western blotting.</p

    Schematic model of possible Hsp90-Akt-FKBP51 complexes.

    No full text
    <p><b>A</b> FKBP51 can bind directly to Akt via its FK1 domain, but not with its FK506-binding pocket. Several other FK1-possessing FKBP homologs may bind to Akt in a similar mode. <b>B</b> Akt and several other kinases can bind to FKBP51 indirectly via Hsp90. <b>C</b> FKBP51 could assist the chaperoning of Akt by binding to Hsp90 via its TPR domain and by interacting with Akt via its FK1 domain.</p

    Increasing the Efficiency of Ligands for FK506-Binding Protein 51 by Conformational Control

    No full text
    The design of efficient ligands remains a key challenge in drug discovery. In the quest for lead-like ligands for the FK506-binding protein 51 (FKBP51), we designed two new classes of bicyclic sulfonamides to probe the contribution of conformational energy in these ligands. The [4.3.1] scaffold had consistently higher affinity compared to the [3.3.1] or monocyclic scaffolds, which could be attributed to better preorganization of two key recognition motifs. Surprisingly, the binding of the rigid [4.3.1] scaffold was enthalpy-driven and entropically disfavored compared to the flexible analogues. Cocrystal structures at atomic resolution revealed that the sulfonamide nitrogen in the bicyclic scaffolds can accept an unusual hydrogen bond from Tyr(113) that mimics the putative FKBP transition state. This resulted in the first lead-like, functionally active ligand for FKBP51. Our work exemplifies how atom-efficient ligands can be achieved by careful conformational control even in very open and thus difficult binding sites such as FKBP51
    corecore